Supplementary Materials

Dropout analysis and missing values ... 2
Cross sectional LCA elbow plots .. 5
LCA Classification probabilities ... 6
Mplus syntax .. 7
References ... 19
Dropout analysis and missing values
At time point 1 in the early pandemic, data were missing in 11.7-13.2% across the support indicators, 4.3% for gender, 4.0% for occupation, 18.9% for frontline, 9.0% for change in work tasks, 15.6% in sleep disturbance and 14.2 – 15.0% across the burnout items (excluding the item which all participants did not receive, this item had data missing in 34.7%).

At time point 2 data were missing in 35.4 – 36.1% across the burnout items and 35.7% in sleep disturbance.

At time point 3 in the mid-pandemic, data were missing in 0.0 – 2.8% across the support indicators, 2.0% for gender, 1.5% for occupation, 0.5% for frontline, 1.5% for change in work tasks, 7.3% for sleep disturbance and 5.8-6.8% across the burnout items.

At time point 4 data were missing in 34.8 – 35.6% across the burnout items and 35.4% in sleep disturbance.

Dropout analysis was made for all variables included in the statistical analysis (i.e., age, gender, occupation, frontline, change in work tasks, burnout, sleep disturbance, and all support indicators – all measured at time 1). The drop-out analysis showed that the dropouts differed from the mid-pandemic study sample in age with a higher mean age (+4.3 years) among those who remained in the sample. The effect size calculated with Cohen’s d was low (-0.386). There were no other statistically significant differences, see Tables S1 and S2.

Table S1

Dropout analysis

<table>
<thead>
<tr>
<th></th>
<th>Answered mid-pandemic</th>
<th>Dropouts mid-pandemic</th>
<th>t</th>
<th>df</th>
<th>p</th>
<th>Cohen’s d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>M (SD)</td>
<td>n</td>
<td>M (SD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>390</td>
<td>46.0 (10.98)</td>
<td>260</td>
<td>41.7 (11.54)</td>
<td>-4.82</td>
<td>648 < .001</td>
</tr>
<tr>
<td>Burnout index</td>
<td>363</td>
<td>2.4 (0.73)</td>
<td>216</td>
<td>2.5 (0.80)</td>
<td>1.47</td>
<td>577 .141</td>
</tr>
<tr>
<td>Sleep disturbance</td>
<td>359</td>
<td>3.7 (1.67)</td>
<td>216</td>
<td>3.8 (1.61)</td>
<td>0.75</td>
<td>573 .453</td>
</tr>
</tbody>
</table>
Table S2

Dropout analysis

<table>
<thead>
<tr>
<th></th>
<th>Answered mid-pandemic</th>
<th>Dropouts mid-pandemic</th>
<th>χ^2</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (women)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>312 80.4</td>
<td>204 77.3</td>
<td>0.94</td>
<td>1</td>
<td>.333</td>
</tr>
<tr>
<td>Men</td>
<td>76 19.6</td>
<td>60 22.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assistant nurse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>91 23.3</td>
<td>61 23.1</td>
<td>0.005</td>
<td>1</td>
<td>.946</td>
</tr>
<tr>
<td>No</td>
<td>299 76.7</td>
<td>203 76.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nurse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>136 34.9</td>
<td>105 39.8</td>
<td>1.625</td>
<td>1</td>
<td>.202</td>
</tr>
<tr>
<td>No</td>
<td>254 65.1</td>
<td>159 60.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physician</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>72 18.5</td>
<td>46 17.4</td>
<td>0.115</td>
<td>1</td>
<td>.735</td>
</tr>
<tr>
<td>No</td>
<td>318 81.5</td>
<td>218 82.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frontline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>197 59.3</td>
<td>143 65.0</td>
<td>1.79</td>
<td>1</td>
<td>.180</td>
</tr>
<tr>
<td>No</td>
<td>135 40.7</td>
<td>77 35.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Changed tasks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>202 53.6</td>
<td>127 52.3</td>
<td>0.103</td>
<td>1</td>
<td>.748</td>
</tr>
<tr>
<td>No</td>
<td>175 46.4</td>
<td>116 47.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not offered</td>
<td>142 38.2</td>
<td>91 39.7</td>
<td>0.591</td>
<td>2</td>
<td>.744</td>
</tr>
<tr>
<td>Not participated</td>
<td>88 23.7</td>
<td>48 21.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participated</td>
<td>142 38.2</td>
<td>90 39.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not offered</td>
<td>105 28.3</td>
<td>63 27.2</td>
<td>0.106</td>
<td>2</td>
<td>.948</td>
</tr>
<tr>
<td>Not participated</td>
<td>162 43.7</td>
<td>102 44.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participated</td>
<td>67 104</td>
<td>67 104</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not offered</td>
<td>200 53.9</td>
<td>119 51.5</td>
<td>2.09</td>
<td>2</td>
<td>.351</td>
</tr>
<tr>
<td>Not participated</td>
<td>87 23.5</td>
<td>48 20.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participated</td>
<td>84 22.6</td>
<td>64 27.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not offered</td>
<td>120 32.4</td>
<td>85 36.6</td>
<td>1.17</td>
<td>2</td>
<td>.558</td>
</tr>
<tr>
<td>Not participated</td>
<td>69 18.6</td>
<td>42 18.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participated</td>
<td>181 48.9</td>
<td>45.3 232</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supervised group support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not offered</td>
<td>120 32.3</td>
<td>81 35.1</td>
<td>4.62</td>
<td>2</td>
<td>.099</td>
</tr>
<tr>
<td>Not participated</td>
<td>90 24.2</td>
<td>69 29.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participated</td>
<td>162 43.5</td>
<td>81 35.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peer support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not offered</td>
<td>156 42.4</td>
<td>91 40.8</td>
<td>1.62</td>
<td>2</td>
<td>.445</td>
</tr>
<tr>
<td>Not participated</td>
<td>96 26.1</td>
<td>51 22.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participated</td>
<td>116 31.5</td>
<td>81 36.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table S2 (Continued)

Dropout analysis

<table>
<thead>
<tr>
<th></th>
<th>Answered mid-pandemic</th>
<th>Dropouts mid-pandemic</th>
<th>χ^2</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not offered</td>
<td>156 42.2</td>
<td>91 40.8</td>
<td>1.62</td>
<td>2</td>
<td>.924</td>
</tr>
<tr>
<td>Not participated</td>
<td>96 26.1</td>
<td>51 22.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participated</td>
<td>116 31.5</td>
<td>81 36.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cross sectional LCA elbow plots

Figure S1

Cross sectional LCA for time point 1 (early pandemic)

![LCA T1](image1)

Figure S2

Cross sectional LCA for time point 2 (mid-pandemic)

![LCA T3](image2)
LCA Classification probabilities

Table S3

Classification probabilities for most likely latent class membership (column) by latent class (row).

<table>
<thead>
<tr>
<th>Latent Class</th>
<th>Not offered (1)</th>
<th>Not participated (2)</th>
<th>Group support participants (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early pandemic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not offered (1)</td>
<td>.966</td>
<td>.012</td>
<td>.022</td>
</tr>
<tr>
<td>Not participated (2)</td>
<td>.039</td>
<td>.925</td>
<td>.037</td>
</tr>
<tr>
<td>Group support participants (3)</td>
<td>.027</td>
<td>.013</td>
<td>.960</td>
</tr>
<tr>
<td>Mid-pandemic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not offered (1)</td>
<td>.935</td>
<td>.037</td>
<td>.028</td>
</tr>
<tr>
<td>Not participated (2)</td>
<td>.043</td>
<td>.929</td>
<td>.028</td>
</tr>
<tr>
<td>Group support participants (3)</td>
<td>.072</td>
<td>.080</td>
<td>.847</td>
</tr>
</tbody>
</table>

Note. Average posterior probabilities (AvePP) are bolded. AvePP values > .7 indicate well-separated classes (Nylund-Gibson & Choi, 2018).
Mplus syntax

Cross-sectional Latent Class Analysis
data: file = NYLCA.dat;
VARIABLE:
 names = list of variables included here
usevariables = rum info edu group peer group2 indv1; seven class indicators are included here
categorical = rum info edu group peer group2 indv1;
missing = all (999);
idvariable = RespID;
classes = c(3); this is a syntax for three latent classes
ANALYSIS:
 TYPE = MIXTURE;
 ESTIMATOR = MLR;
 PROCESS = 5;
 STARTS = 3000 100;
 STITERATIONS = 100;
OUTPUT:
 CINTERVAL SVALUES TECH1 TECH7 TECH10 TECH11;

Longitudinal class similarity (Morin et al., 2020)
 A. Configural similarity
VARIABLE:
 names = list of variables included here
usevariables = rum info edu group group2 peer indv1 t3_rum t3_info t3_edu t3_group t3_group2 t3_peer t3_indv1;
categorical = rum info edu group peer group2 indv1 t3_rum t3_info t3_edu t3_group t3_group2 t3_peer t3_indv1;
missing = all (999);
idvariable = RespID;
classes = c1(3) c3(3) ;
ANALYSIS:
TYPE = MIXTURE;
ESTIMATOR = MLR;
PROCESS = 5;
STARTS = 7000 100;
STITERATIONS = 100;
MODEL:
%OVERALL%
[c1#1*0.18849]; Istarting values based on previous cross-sectional LCA analyses
[c1#2*0.65704];
[c3#1*-0.00856];
[c3#2*-0.73449];
MODEL C1:
%C1#1%
[rum$1*0.47577]; Ithreshold starting values based on previous cross-sectional LCA analyses
[rum$2*1.28117];
[info$1*-0.41579];
[info$2*1.69834];
[edu$1*1.01325];
[edu$2*2.31561];
[group$1*2.22961];
[group$2*2.81490];
[group2$1*3.0000];
[group2$2*3.02749];
[peer$1*1.27274];
[peer$2*2.23944];
[indv1$1*1.79612];
[indv1$2*3.52712];
%C1#2%
[rum$1*-1.00729];
[rum$2*-0.32494];
... I continued for classes early and mid-pandemic

B. Structural similarity

MODEL:

%OVERALL%

[c1#1*0.18849]; # Starting values based on previous cross-sectional LCA analyses
[c1#2*0.65704];
[c3#1*0.00856];
[c3#2*-0.73449];

MODEL C1:

%C1#1%

[rum$1*0.47577] (1); # Thresholds constraints added
[rum$2*1.28117] (2);
[info$1*-0.41579] (3);
[info$2*1.69834] (4);
[edu$1*1.01325] (5);
[edu$2*2.31561] (6);
[group$1*2.22961] (7);
[group$2*2.81490] (8);
[group2$1*3.0000] (9);
[group2$2*3.02749] (10);
[peer$1*1.27274] (11);
[peer$2*2.23944] (12);
[indv$1*1.79612] (13);
[indv$2*3.52712] (14);

%C1#2%

[rum$1*-1.00729] (15);
[rum$2*-0.32494] (16);
... lcontinued for classes early pandemic

MODEL C3:

%C3#1%

[t3_rum$1*1.06397] (1);
[t3_rum$2*1.69882] (2);
[t3_info$1*-0.04089] (3);
[t3_info$2*2.17690] (4);
[t3_edu$1*0.90029] (5);
[t3_edu$2*1.75819] (6);
[t3_group$1*1.72017] (7);
[t3_group$2*2.13653] (8);
[t3_group2$1*1.92766] (9);
[t3_group2$2*2.42417] (10);
[t3_peer$1*1.76858] (11);
[t3_peer$2*2.35529] (12);
[t3_indv1$1*1.73999] (13);
[t3_indv1$2*2.47845] (14);

%C3#2%

[t3_rum$1*-1.00609] (15);
[t3_rum$2*-0.18786] (16);

... lcontinued for classes mid-pandemic

C. Distributional similarity

MODEL:

%OVERALL%

[c1#1*0.18849] (p1); Idistributional constraints added
[c1#2*0.65704] (p2);
[c3#1*0.00858] (p1);
[c3#2*-0.72594] (p2);

MODEL C1:

%C1#1%
[rum$1*0.74999] (1);
[rum$2*1.54377] (2);
[info$1*0.30796] (3);
[info$2*1.89679] (4);
[edu$1*0.83899] (5);

... I continued for classes early and mid-pandemic, same as in the structural model

Latent Transition Analysis model (based on structural similarity model)

ANALYSIS:

TYPE = MIXTURE;

ESTIMATOR = MLR;

STARTS = 0: *Random starts were deactivated for the number and structure of classes to remain unchanged*

MODEL:

%OVERALL%

C3 on C1; *Transitions from early to mid-pandemic added*

MODEL C1:

%C1#1%

[rum$1@0.74999] (1); *Measurement model fixed at values estimated in the structural similarity model*

[rum$2@1.54377] (2);
[info$1@-0.30796] (3);
[info$2@1.89679] (4);
[edu$1@0.83899] (5);
[edu$2@1.97339] (6);

... I continued for classes early and mid-pandemic using starting values from the structural similarity model

Predictive and explanatory models

A. Predictive similarity model

MODEL:

%OVERALL%
C1 on gender (g1-g2); \textit{effects of predictors fixed to equality across time points}
C1 on age (a1-a2);
C1 on anurse (n1-n2);
C1 on nurse (s1-s2);
C1 on physician (p1-p2);
C1 on frontline (f1-f2);
C1 on T1_change (c1-c2);
C3 on gender (g1-g2);
c3 on age (a1-a2);
c3 on anurse (n1-n2);
c3 on nurse (s1-s2);
c3 on physician (p1-p2);
c3 on T3_frontline (f1-f2);
c3 on T3_change (c1-c2);
MODEL C1:
\%C1\#1\%
 [rum$1@0.74999] (1);
 [rum$2@1.54377] (2);
 [info$1@-0.30796] (3);

... \textit{continued for classes early and mid-pandemic using starting values from the structural similarity model}

\textbf{B. Explanatory free model}

MODEL:
\%OVERALL\%
C3 on C1;
MODEL C1:
\%C1\#1\%
 [rum$1@0.74999] (1);
 [rum$2@1.54377] (2);
 [info$1@-0.30796] (3);
 [info$2@1.89679] (4);
[edu$1@0.83899] (5);
[edu$2@1.97339] (6);
[group$1@1.95118] (7);
[group$2@2.47976] (8);
[group$2@1.48052] (9);
[group$2@2.83248] (10);
[peer$1@1.48179] (11);
[peer$2@2.30756] (12);
[indv$1@1.90008] (13);
[indv$2@2.95223] (14);
[T1_olbi_index] (oa1); T1_olbi_index;
sleepq] (pa1); sleepq;
[T2_olbi_index] (loa1); T2_olbi_index;
[T2_sleepq] (lpa1); T2_sleepq;
%C1#2%
[rum$1@-0.63043] (29);
[rum$2@1.29254] (30);
[info$1@-1.76027] (31);
[info$2@1.61369] (32);
[edu$1@-0.70492] (33);
[edu$2@1.84049] (34);
[group$1@-1.02256] (35);
[group$2@2.05642] (36);
[group$2@1.80205] (37);
[group$2@2.85437] (38);
[peer$1@-0.77531] (39);
[peer$2@2.45956] (40);
[indv$1@-1.09065] (41);
[indv$2@3.05762] (42);
[T1_olbi_index] (oa2); T1_olbi_index;
sleepq] (pa2); sleepq;
[T2_olbi_index] (loa2); T2_olbi_index;
[T2_sleepq] (lpa2); T2_sleepq;

... !continued for classes early pandemic using starting values from the structural similarity model

MODEL C3:

%C3#1%
[t3_rum$1@0.74999] (1);
[t3_rum$2@1.54377] (2);
[t3_info$1@-0.30796] (3);
[t3_info$2@1.89679] (4);
[t3_edu$1@0.83899] (5);
[t3_edu$2@1.97339] (6);
[t3_group$1@1.95118] (7);
[t3_group$2@2.47976] (8);
[t3_group2$1@2.48052] (9);
[t3_group2$2@2.83248] (10);
[t3_peer$1@1.48179] (11);
[t3_peer$2@2.30756] (12);
[t3_indv1$1@1.90008] (13);
[t3_indv1$2@2.95223] (14);
[T3_olbi_index] (ob1); T3_olbi_index;
[T3_sleepq] (pb1); T3_sleepq;

... !continued for classes mid-pandemic using starting values from the structural similarity model

MODEL CONSTRAINT:

NEW (oa12); oa12 = oa1-oa2;
NEW (oa13); oa13 = oa1-oa3;
NEW (oa23); oa23 = oa2-oa3;
NEW (ob12); ob12 = ob1-ob2;
NEW (ob13); ob13 = ob1-ob3;
NEW (ob23); ob23 = ob2-ob3;
NEW (pa12); pa12 = pa1-pa2;
NEW (pa13); pa13 = pa1-pa3;
NEW (pa23); pa23 = pa2-pa3;
NEW (pb12); pb12 = pb1-pb2;
NEW (pb13); pb13 = pb1-pb3;
NEW (pb23); pb23 = pb2-pb3;
NEW (loa12); loa12 = oa1-oa2;
NEW (loa13); loa13 = oa1-oa3;
NEW (loa23); loa23 = oa2-oa3;
NEW (lob12); lob12 = ob1-ob2;
NEW (lob13); lob13 = ob1-ob3;
NEW (lob23); lob23 = ob2-ob3;
NEW (lpa12); lpa12 = lpa1-lpa2;
NEW (lpa13); lpa13 = lpa1-lpa3;
NEW (lpa23); lpa23 = lpa2-lpa3;
NEW (lpb12); lpb12 = lpb1-lpb2;
NEW (lpb13); lpb13 = lpb1-lpb3;
NEW (lpb23); lpb23 = lpb2-lpb3;

C. Explanatory similarity model

MODEL:

%OVERALL%
C3 on C1;
MODEL C1:

%C1#1%
[rum$1@0.74999] (1);
[rum$2@1.54377] (2);
[info$1@-0.30796] (3);
[info$2@1.89679] (4);
[edu$1@0.83899] (5);
[edu$2@1.97339] (6);
... !continued for classes early pandemic using starting values from the structural similarity model

MODEL C3:

%C3#1%
[t3_rum$1@0.74999] (1);
[t3_rum$2@1.54377] (2);
[t3_info$1@-0.30796] (3);
[t3_info$2@1.89679] (4);
[t3_edu$1@0.83899] (5);
[t3_edu$2@1.97339] (6);
[t3_group$1@1.95118] (7);
[t3_group$2@2.47976] (8);
[t3_group2$1@2.48052] (9);
[t3_group2$2@2.83248] (10);
[t3_peer$1@1.48179] (11);
[t3_peer$2@2.30756] (12);
[t3_indv1$1@1.90008] (13);
[t3_indv1$2@2.95223] (14);
[T3_olbi_index] (oa1); T3_olbi_index;
[T3_sleepq] (pa1); T3_sleepq;
[T4_olbi_index] (loa1); T4_olbi_index;
[T4_sleepq] (lpa1); T4_sleepq;

... !continued for classes mid-pandemic using starting values from the structural similarity model

MODEL CONSTRAINT:

NEW (oa12); oa12 = oa1-oa2;
NEW (oa13); oa13 = oa1-oa3;
NEW (oa23); oa23 = oa2-oa3;
NEW (pa12); pa12 = pa1-pa2;
NEW (pa13); pa13 = pa1-pa3;
NEW (pa23); pa23 = pa2-pa3;
NEW (loa12); loa12 = oa1-oa2;
NEW (loa13); loa13 = oa1-oa3;
NEW (loa23); loa23 = oa2-oa3;
NEW (lpa12); lpa12 = lpa1-lpa2;
NEW (lpa13); lpa13 = lpa1-lpa3;
NEW (lpa23); lpa23 = lpa2-lpa3;
References

https://doi.org/10.1037/tps0000176